Multi-objective evolution of fuzzy systems
نویسندگان
چکیده
Fuzzy systems comprise one of the models best suited to function approximation problems, but due to the non linear dependencies between the parameters that define the system rules, the solution search space for this type of problems contains many local optima. Another important issue is the identification of the optimum structure for the fuzzy system. Depending on the complexity of the model, different solutions can be found with different compromises between their approximation error and their generalization properties. Thus, the problem becomes a multi-objective problem with two clearly competing objectives, the complexity of the model and its approximation error. The algorithms proposed in the literature to construct fuzzy systems from examples usually refine iteratively a unique model until a compromise between its complexity and its approximation error is found. This is not an adequate approach for this problem because there exists a set of Pareto-optimum solutions that can be considered equivalent. Thus, we propose the use of multi-objective evolutionary algorithms because, as they maintain a population of potential solutions for the problem, they are able to optimize both objectives simultaneously. We also incorporate some new expert evolutionary operators that try to avoid the generation of worse solutions in order to accelerate the convergence of the algorithm. The proposed algorithm is tested with some target functions widely used in the literature and the results obtained are compared to other approaches.
منابع مشابه
SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کاملReliable hub-and-spoke network design problems under uncertainty through multi-objective programming
HLP (hub location problem) tries to find locations of hub facilities and assignment of nodes to extended facilities. Hubs are facilities to collect, arrange, and distribute commodities in telecommunication networks, cargo delivery systems, etc. Hubs are very crucial and their inaccessibility impresses on network whole levels. In this paper, first, total reliability of the network is defined bas...
متن کاملFuzzy PID Tuned by a Multi-Objective Algorithm to Solve Load Frequency Control Problem
Abstract In this paper, a fuzzy PID with new structure is proposed to solve the load frequency control in interconnected power systems. in this study, a new structure and effective of the fuzzy PID-type Load frequency control (LFC) is proposed to solve the load frequency control in interconnected power systems. The main objective is to eliminate the deviations in the frequency of different area...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 10 شماره
صفحات -
تاریخ انتشار 2006